Thermochemical Biofuels: Challenges and Opportunities June 14, 2012

Brent Shanks Steffenson Professor Chemical & Biological Engineering Department

Some Context

• Petroleum at \$90/bbl

- Gasoline, wholesale & untaxed
- Diesel, wholesale & untaxed
- Grain Ethanol, corn at \$3 & \$6.50/bu

~\$2.70/gal ~\$3.00/gal \$2.40 & \$3.80/gge

Usage (in billions of bushels)	2002/03	2007/08	2012/13
Ethanol	1.10	3.00	5.00
Returned from ethanol to feed	0.36	1.00	1.66
Feed, export, residual, other	8.40	9.80	9.79
Total available for other uses	8.76	10.80	11.45

Biofuels Digest, May 11, 2012

Technology Comparison*

- Requires consistent capital cost and evaluation bases
- Comparative economics, not business-case economics
- Considered commercial or "near-commercial" technology where possible
- Material and energy balances by Aspen Plus, generally
- Location U.S. Gulf Coast, 2011 \$
- Biomass at \$5.4/GJ (limit 1 million t/yr/plant)
- Coal at \$2/GJ
- Estimates for N^{th} of a kind plants (N = 5-7)
- Stand-alone plant: Feedstock in; Finished fuels out
- Comparisons are based on best available data; design basis and data are often not very complete

* Jim Katzer (ExxonMobil retired, Iowa State University)

Biomass Properties & Fuel Cost Component

Material:	Grain (corn)	Corn Stover	Wood (poplar)
Starch, wt %	72.0	n/m	n/m
Cellulose, wt %	2.4	36	40
Hemicellulose, wt %	5.5	26	22
Lignin, wt %	0.2	19	24
Ash, wt %	1.4	12	0.6
Bio-Conversion:			
Typical Yields: gge/dry tonr	ne 72	48	50
Thermal-Conversion:			
Gasification Yield, gge/dry	tonne -	67	72
Pyrolysis Yield, gge/dry ton	ine -	55	60
Feedstock Cost, \$/dry tonne:	255	95	80
Feedstock Cost Component:			
Bioconversion, \$/gge	3.50*	\$2.00	\$1.60
Gasification, \$/gge	-	\$1.40	\$1.10
Fast Pyrolysis, \$/gge	-	\$1.75	\$1.30

Red numbers are first-cut indicator of feedstock cost contribution to product cost * For Corn at \$6.50/bu, DDGS netback reduces this to ~\$2.60/gge

Thermochemical: Gasification

- Coal: all components are commercially robust
- Biomass gasification is "essentially commercial"
- Options: Methanol synthesis followed by MTG to produce mainly gasoline, DME

Thermochemical: Gasification

Feedstock		Mode	<u>Fuel Pri</u>	ce, \$/gge
– Coal (CTL))	Vent CO ₂	1.	.75
– Coal		CCS	1.	.90
– Coal/Bioma	ass (40%) (CB7	TL) Vent CO ₂	2.	.75
– Coal/Bioma	ıss (40%)	CCS	3.	.00
– Biomass (B	TL)	vent CO ₂	3.	.60
– Biomass		CCS	3.	.85
	4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00 0.50 -1.00	BUT CS BUT CS	 Co-produce Recovery CO2 Disposal O & M Coal Feed Biomass Feed Capital Recovery 	
		Fuel Component Co	st	

Biomass Gasification Challenges

- Ash management
- "Tars" conversion
- Scalability

- Reactor technology
 - CompactGTL, Syntroleum
 - Velocys (25 bpd, May, 2012)

Biomass Fast Pyrolysis*

*Bridgwater et al. in Progress in Thermochemical Biomass Conversion, Bridgwater, ed. (2001) 977.

Composition: Fast Pyrolysis Bio-Oil*

	<u>Wt%</u>
Water	20-30
Lignin fragments: insoluble pyrolytic lignin	15-30
Aldehydes: formaldehyde, acetaldehyde, hydroxyacetaldehyde, glyoxal	10-20
Carboxylic acids: formic, acetic, propionic, butyric, pentanoic, hexanoic	10-15
Carbohydrates: cellobiosan, levoglucosan, oligosaccharides	5-10
Phenols: phenol, cresol, guaiacols, syringols	2-5
Furfurals	1-4
Alcohols: methanol, ethanol	2-5
Ketones: acetol (1-hydroxy-2-propanone), cyclopentanone	1-5

*Bridgwater et al.; in Progress in Thermochemical Biomass Conversion, Bridgwater, ed. (2001) 977.

Thermal Conversion Reactions

Thermochemical: Pyrolysis

- Fast pyrolysis
 - Dynamotive, ENSYN
 - Avello
- Catalytic pyrolysis
 - KIOR

- GTI

- Anellotech
- Hydropyrolysis

ENSYN, 40 tonne/day

KIOR, 50 ton/day

Bio-Oil Upgrading Approach

Schematic of Pyrolyzer–GC/MS System

Patwardhan, P.; et al. J. Anal. Appl. Pyrolysis 2009, 86, 323

Effect of Chain Length

	Glucose	Cellobiose	Maltohexaose	Cellulose
LMW	57.42	42.16	41.01	21.42
Furans	19.08	17.44	13.85	5.63
Anhydrosugars	13.65	30.69	40.33	67.59
Levoglucosan	7.01	24.36	33.11	58.78

All numbers are wt% LMW – Low molecular weight compounds

Proposed Mechanism

Ponder et. al., J Anal. Appl. Pyrolysis,, 1991

M^cCormick

Department of Chemical and Biological Engineering

Northwestern Engineering

Quantum Chemistry Investigations

Ponder et al., J. Anal. Appl. Pyrolysis 1992, 22, 217-229.

Northwestern Engineering

M^cCormick

Quantum Chemistry Investigations Results

Mayes and Broadbelt, "Unraveling the Reactions that Unravel Cellulose," submitted.

NABC National Advanced Biofuels Consortium

Northwestern Engineering

Reaction pathways included in cellulose fast pyrolysis

M^cCormick

Department of Chemical and Biological Engineering

Northwestern Engineering

Time evolution of products of cellulose fast pyrolysis

Effect of temperature on cellulose fast pyrolysis products

Experimental data corresponds to Patwardhan et al., Biores. Technol. 2010, 101, 4646-4655

Alkali/Alkaline Earth Effects

Patwardhan, P.; et al. Bioresource Technol. 2010, 101, 4646

Effect of Alkali/Alkaline Earth

Proposed Mechanism

Micropyrolysis of Lignin

Lignin Monomers

GPC of Lignin Monomers

"Passivating" Alkali in Biomass

Biochar Application

Increases: Nutrient Availability Microbial Activity Soil Organic Matter Water Retention & Quality Crop Yields

> Decreases: Fertilizer Needs Greenhouse Gas Emissions Nutrient Leaching Soil Bulk Density

Carbon Residence Time

Biochar "Average" Structure

Moderate Temperature

High Temperature

Brewer, et al. Environ. Prog. Sustainable Energy 2009, 28, 386-396.

Key Challenges

- Gasification
 - \rightarrow issue of scale

• Pyrolysis

 \rightarrow issue of product quality

Acknowledgements

- Robert Brown
- Jim Katzer
- Pushkaraj Patwardhan
- Klaus Schmidt-Rohr
- Catherine Brewer
- Linda Broadbelt
 - Vinu Ravikrishnan
 - Heather Mayes
- ConocoPhillips
- U.S. Department of Energy National Advanced Biofuels Consortium

